Overblog Seguir este blog
Edit page Administration Create my blog
/ / /

Elementos de Química Básica
Composición mineralógica de la tierra

Las Capas de la Tierra


Imagen 1 Cap IISi hacemos un corte que atraviese la Tierra por el centro encontraremos que, bajo la corteza, hay diversas capas cuya estructura y composición varía mucho. La Tierra es uno de los planetas sólidos o, al menos, de corteza sólida, ya que no todas las capas lo son.

Por encima tenemos la atmósfera, una capa de gases a los que llamamos aire, formada a su vez por una serie de capas, que funciona como escudo protector del planeta, mantiene la temperatura y permite la vida. En las hendiduras y zonas bajas de la corteza, agua, mucha agua líquida y, en los polos, helada. Por debajo de la corteza, una serie de capas en estado pastoso, muy calientes, y con una densidad creciente hasta llegar al núcleo de la Tierra, de nuevo, sólido, metálico, denso.

 Capa interna 

 Espesor aproximado 

 Estado físico 

 Corteza 

 7-70 km 

 Sólido 

 Manto superior 

 650-670 km 

 Plástico 

 Manto inferior 

 2.230 km 

 Sólido 

 Núcleo externo 

 2.220 km 

 Líquido 

 Núcleo interno 

 1250 km 

 Sólido 

 

La corteza terrestre

La corteza terrestre tiene un grosor variable que alcanza un máximo de 75 km bajo la cordillera del Himalaya y se reduce a menos de 7 km en la mayor parte de las zonas profundas de los océanos. La corteza continental es distinta de la oceánica.

La capa superficial está formada por un conjunto de rocas sedimentarias, con un grosor máximo de 20-25 km, que se forma en el fondo del mar en distintas etapas de la historia geológica. La edad más antigua de estas rocas es de hasta 3 800 millones de años. Por debajo existen rocas del tipo del granito, formadas por enfriamiento de magma. Se calcula que, bajo los sistemas montañosos, el grosor de esta capa es de más de 30 km. La tercera capa rocosa está formada por basaltos y tiene un grosor 15-20 km, con incrementos de hasta 40 km.

A diferencia de la corteza continental, la oceánica es geológicamente joven en su totalidad, con una edad máxima de 180 millones de años. Aquí también encontramos tres capas de rocas: la sedimentaria, de anchura variable, formada por las acumulaciones constantes de fragmentos de roca y organismos en los océanos; la del basalto de 1.5 a 2 km de grosor, mezclada con sedimentos y con rocas de la capa inferior y una tercera capa constituida por rocas del tipo del gabro, semejante al basalto en composición, pero de origen profundo, que tiene unos 5 kilómetros de grosor. Parece que la corteza oceánica se debe al enfriamiento de magma proveniente del manto superior
.

El Manto y el Núcleo

Imagen 2 Cap IILa corteza terrestre es una fina capa si la comparamos con el resto del planeta. Está formada por placas más o menos rígidas que se apoyan o flotan sobre un material viscoso a alta temperatura que, a veces, sale a la superficie a través de volcanes y que continuamente fluye en las dorsales oceánicas para formar nueva corteza.

A unos 3.000 km de profundidad se encuentra el núcleo de la Tierra, una zona donde predominan los metales y que, lejos de resultarnos indiferente, influye sobre la vida en la Tierra ya que se le considera el responsable de la mayoría de fenómenos magnéticos y eléctricos que caracterizan nuestro planeta.

El manto y el núcleo son el pesado interior de la Tierra y constituyen la mayor parte de su masa.

El manto terrestre

El manto es una capa de 2.900 km de grosor, constituida por rocas más densas, donde predominan los silicatos. A unos 650-670 km de profundidad se produce una especial aceleración de las ondas sísmicas, lo que ha permitido definir un límite entre el manto superior y el inferior. Este fenómeno de debe a un cambio de estructura, que pasa de un medio plástico a otro rígido, donde es posible que se conserve la composición química en general.

La corteza continental creció por una diferenciación química del manto superior que se inició hace unos 3.800 millones de años. En la base del manto superior la densidad es de unos 5.5. En la zona superior se producen corrientes de convección, semejantes al agua que hierve en una olla, desplazándose de la porción inferior, más caliente, a la superior, más fría. Estas corrientes de convección son el motor que mueve las placas litosféricas.

El núcleo de la Tierra

Se trata de una gigantesca esfera metálica que tiene un radio de 3.485 km, es decir, un tamaño semejante al planeta Marte. La densidad varía, de cerca de 9 en el borde exterior a 12 en la parte interna. Está formado principalmente por hierro y níquel, con agregados de cobre, oxígeno y azufre.

El núcleo externo es líquido, con un radio de 2.300 km. La diferencia con el núcleo interno se manifiesta por un aumento brusco en la velocidad de las ondas p a una profundidad entre 5.000 y 5.200 km

El núcleo interno tiene un radio de 1.220 km. Se cree que es sólido y tiene una temperatura entre 4.000 y 5.000° C. Es posible que el núcleo interno sea resultado de la cristalización de lo que fue una masa líquida de mayor magnitud y que continúe este proceso de crecimiento. Su energía calorífica influye en el manto, en particular en las corrientes de convección. Actualmente se considera que el núcleo interno posee un movimiento de rotación y es posible que se encuentre en crecimiento a costa del externo que se reduce.

Muchos científicos creen que hace 4.000 millones de años la Tierra ya tenía un campo magnético causado por un núcleo metálico. Su formación marcó la frontera entre el proceso de consolidación y el enfriamiento de la superficie

Minerales 

Los minerales son cuerpos de materia sólida del suelo que pueden aparecer de formas muy diversas, ya sea de forma aislada o como componentes fundamentales de las rocas.

Se pueden estudiar los minerales a partir de las distintas propiedades que presentan, como la dureza, geometría (en cristales), composición química, densidad, ... La mayor parte de los objetos que usamos en nuestra vida cotidiana proceden de uno o varios minerales.

Características de los minerales

Imagen 3 Cap IIEl cristal de una ventana no es un cristal, aunque está hecho con minerales cristalinos. Del mismo modo, una roca no es un mineral, sino un material formado por minerales diversos.

Para comprender que es un mineral, podemos estudiar algunas de sus características:

1.- Se encuentra en la naturaleza, es decir, no está fabricado.
2.- Tiene una estructura geométrica fija, por tanto, és sólido.
3.- Es de naturaleza inorgánica, por eso, la concha de un molusco no es un mineral, aunque contenga minerales.
4.- Tiene una composición química fija, aunque, a veces, pueda contener una sustancia contaminante que modifique su color.

A menudo, los minerales se encuentran en la naturaleza formando masas dentro de las rocas. Entonces se habla de una veta o filón de un determinado mineral. Su descubrimiento y explotación determina la actividad de la minería. Desde la prehistoria los humanos hemos usado los minerales para fabricar utensilios, herramientas, máquinas y armas.

  La apariencia de los minerales

Para clasificar los minerales es importante observar una serie de propiedades fisiológicas:

1.- Color: algunos minerales pueden tener un color cuando son puros y otros provocados por impurezas.
2.- Color pulverizado: si se raya un mineral con un objeto más duro, se obtiene un polvo de un color característico.
3.- Brillo: puede ser un brillo metálico, como el hierro, o no metálico, como los sedosos o nacarados.
4.- Índice de refracción: (sólo si se trata de un mineral cristalino) un rayo de luz que atraviesa un cristal se desvía un ángulo característico de cada mineral.
5.- Birefringencia: algunos minerales cristalinos dividen en dos un rayo de luz que les atraviese.
6.- Luminiscencia: algunos minerales emiten luz cuando se les ilumina.

Estas son algunas de las características de los minerales que se pueden observar con cierta facilidad.


Imagen 4 Cap IIPodemos clasificar los minerales por sus propiedades físicas, ópticas, eléctricas, magnéticas y por su composición química, aunque este último no es el método habitual, ya la mayoría pueden ser identificados mediante observación espectroscópica e incluso visual. Aun así, el análisis químico es la única forma de identificar con exactitud la naturaleza de un mineral.

Las propiedades físicas son de gran importancia en el estudio de los minerales. Muchas se pueden observar fácilmente, o recurrir a un espectroscopio.

Dureza de un mineral

La dureza de un mineral es la resistencia que presenta a ser rayado. Un mineral posee una dureza mayor que otro, cuando el primero es capaz de rayar al segundo.

El mineralogista alemán Mohs estableció en 1822 una escala de medidas que lleva su nombre, y que se utiliza en la actualidad, en la que cada mineral puede ser rayado por los que le siguen. Se toman 10 minerales comparativos de más blando a más duro, que son: talco, yeso, calcita, fluorita, apatito, ortosa (feldespato), cuarzo, topacio, corindón y diamante.

Tenacidad o cohesión

La tenacidad o cohesión es el mayor o menor grado de resistencia que ofrece un mineral a la rotura, deformación, aplastamiento, curvatura o pulverización. Se distinguen las siguientes clases de tenacidad:
- Frágil: es el mineral que se rompe o pulveriza con facilidad. Ejemplos: cuarzo y el azufre.
- Maleable: el que puede ser batido y extendido en láminas o planchas. Ejemplos: oro, plata, platino, cobre, estaño.
- Dúctil: el que puede ser reducido a hilos o alambres delgados. Ejemplos: oro, plata y cobre.
- Flexible: si se dobla fácilmente pero, una vez deja de recibir presión, no es capaz de recobrar su forma original. Ejemplos: yeso y talco.
- Elástico: el que puede ser doblado y, una vez deja de recibir presión, recupera su forma original. Ejemplo: la mica.

Fractura de un mineral

Imagen 5 Cap IICuando un mineral se rompe lo puede hacer de diversas formas:
- Exfoliación: significa que el mineral se puede separar por superficies planas y paralelas a las caras reales. Ejemplos: mica, galena, fluorita y yeso.
- Laminar o fibrosa: cuando presenta una superficie irregular en forma de astillas o fibras. Ejemplo: la actinolita.
- Concoidea: la fractura presenta una superficie lisa y de suave curva, como la que muestra una concha por su parte interior. Ejemplos: sílex y obsidiana.
- Ganchuda: cuando se produce una superficie tosca e irregular, con bordes agudos y dentados. Ejemplos: magnetita y cobre nativo.
- Lisa: es la que presenta una superficie lisa y regular.
- Terrosa: es la que se fractura dejando una superficie con aspecto granuloso o pulverulento.

Electricidad y magnetismo

Muchos minerales conducen bien la electricidad (conductores), mientras que se oponen a su paso (aislantes). Unos pocos la conducen medianamente (semiconductores). Gracias a estos últimos se han desarrollado semiconductores que permiten al ser humano conseguir un alto nivel tecnológico. Pero hay más comportamientos de los minerales en relación con las fuerzas electromagnéticas:
- Magnetismo: consiste en atraer el hierro y sus derivados. Los imanes naturales son permanentes. La magnetita es un imán natural conocido desde tiempos muy remotos.
- Piezoelectricidad: es la capacidad para producir corrientes eléctricas cuando se les aplica presión. Si se aplica una fuerza a las caras de un cristal, genera cargas eléctricas y, si se aplican cargas eléctricas, entonces se produce una deformación de las caras del cristal. Ejemplo: el cuarzo.
- Piroelectricidad: se producen corrientes eléctricas en el extremo de las caras cuando el mineral se somete a un cambio de temperatura. Ejemplos: cuarzo y turmalina.
- Radiactividad: es la propiedad que poseen determinados minerales para emitir partículas de forma natural y espontánea. La radiactividad natural tiene muchas aplicaciones científicas, médicas e industriales, y los minerales que la poseen raramente alcanzan niveles peligrosos. Ejemplo: la uraninita.

Los minerales que constituyen la corteza terrestre se han formado a partir de los elementos químicos que originaron el planeta, gracias a reacciones ocurridas en su interior. Por este motivo, la cantidad de combinaciones es inmensa.

Para poner un poco de orden, se clasifican los minerales atendiendo a la forma en que se originan, a sus características cristalográficas, a su composición química, ... Mención aparte merecen los cristales y, entre ellos, los llamados "piedras preciosas" que siempre han cautivado a la humanidad.

Clasificación química

La clasificación química divide los minerales en grupos según sus compuestos químicos. Cualquier mineral conocido puede ser integrado dentro de estos grupos, pues la práctica totalidad de ellos incluyen alguno de estos compuestos.

1.- Elementos nativos: son los que se encuentran en la naturaleza en estado libre, puro o nativo, sin combinar o formar compuestos químicos. Ejemplos: oro, plata, azufre, diamante.

2.- Sulfuros: compuestos de diversos minerales combinados con el azufre. Ejemplos: pirita, galena, blenda, cinabrio.

3.- Sulfosales: minerales compuestos de plomo, plata y cobre combinados con azufre y algún otro mineral como el arsénico, bismuto o antimonio. Ejemplos: pirargirita, proustita.

4.- Óxidos: producto de la combinación del oxígeno con un elemento. Ejemplos: oligisto, corindón, casiterita, bauxita.

5.- Haluros: compuestos de un halógeno con otro elemento, como el cloro, flúor, yodo o bromo. Ejemplos: sal común, halita.

6.- Carbonatos: sales derivadas de la combinación del ácido carbónico y un metal. Ejemplos: calcita, azurita, mármol, malaquita.

Imagen 7 Cap II7.- Nitratos: sales derivadas del ácido nítrico. Ejemplos: nitrato sódico (o de Chile), salitre o nitrato potásico.

8.- Boratos: constituidos por sales minerales o ésteres del ácido bórico. Ejemplos: borax, rasorita.

9.- Fosfatos, arseniatos y vanadatos: sales o ésteres del ácido fosfórico, arsénico y vanadio. Ejemplos: apatita, turquesa, piromorfita.

10.- Sulfatos: sales o ésteres del ácido sulfúrico. Ejemplos: yeso, anhidrita, barita.

11.- Cromatos, volframatos y molibdatos: compuestos de cromo, molibdeno o wolframio. Ejemplos: wolframita, crocoita.

12.- Silicatos: sales de ácido silícico, los compuestos fundamentales de la litosfera, formando el 95% de la corteza terrestre. Ejemplos: sílice, feldespato, mica, cuarzo, piroxeno, talco, arcilla.

13.- Minerales radioactivos: compuestos de elementos emisores de radiación. Ejemplos: uraninita, torianita, torita

Cristales


Imagen 8 Cap IILos minerales pueden aparecer en la naturaleza, básicamente, de dos maneras: sin una forma definida (amorfos) o bien con una disposición geométrica bien definida. A estos les llamamos minerales cristalinos o, simplemente, cristales.

Para que en un lugar se formen cristales se necesita espacio. Poe eso, suelen aparecer en las grietas o en las cavidades vacías de las rocas. También aparecen formando parte de rocas blandas, que facilitan su crecimiento.

Muchos minerales adoptan formas cristalinas cuando las condiciones de formación son favorables. La cristalografía es el estudio del crecimiento, la forma y el carácter geométrico de los cristales. La disposición de los átomos en un cristal puede determinarse por medio del análisis por difracción de los rayos X. La química cristalográfica estudia la relación entre la composición química, la disposición de los átomos y las fuerzas de enlace entre éstos.

La mayoría de los cristales de la tierra se formaron hace millones de años. Los cristales se forman cuando la roca líquida del interior de la Tierra se enfría y endurece. A veces los cristales se forman cuando los líquidos subterráneos recorren su camino entre las grietas y depositan lentamente los minerales.

Hay muchos cristales que reaccionan ante una acción física de forma distinta según la dirección en que se produce la fuerza. Se llaman cristales anisótropos. Los minerales amorfos, en cambio, reaccionan ante una acción física siempre de la misma forma, independientemente de la dirección, por esos son isótropos.

Ley de la constancia de los ángulos diedros

Cuando las condiciones de temperatura son las mismas, los cristales de un mismo tipo tienen los mismos ángulos diedros.

Gemas o piedras preciosas

Imagen 9 Cap IISe llaman así diversos minerales duros, transparentes, muy valiosos por su rareza y que, después de haber sido convenientemente tallados, se usan en joyería y en artes decorativas. Se suelen distinguir dos tipos:

Piedras preciosas, consideradas objetos de lujo desde la antigüedad: diamante, rubí, esmeralda, zafiro

Piedras finas, cuyo precio en el mercado no es tan elevado: topacio, amatista, granate, turmalina,

La ciencia, utilizando medios analíticos cada vez más sensibles, va descubriendo las substancias que colorean los minerales alocromáticos. Así la amatista tiene color violeta debido a trazas de manganeso y la fluorina es verde a causa de pequeñísimas cantidades de hierro y manganeso que contiene.

La belleza de las gemas depende en gran medida de sus propiedades ópticas. Las más importantes son el grado de refracción y el color. Otras propiedades incluyen: el fuego, la exhibición de colores prismáticos; el dicroísmo, habilidad de algunas piedras para mostrar dos colores distintos según la dirección con que se observan, y la transparencia.

El diamante es muy apreciado por su fuego y brillo, el rubí y la esmeralda por la intensidad y belleza de sus colores, y el zafiro estrellado por el asterismo (propiedad que provoca la aparición de inclusiones con forma de estrella), tanto como por su color.

Rocas Sedimentarias y Metamórficas

Una vez que las rocas se han formado a partir del magma que asciende y sale a la superficie, pueden sufrir diversos procesos que las transforman. Por una parte, pueden ser pulverizadas por la erosión y, sus fragmentos, dar origen a rocas sedimentarias. Por otra, pueden hundirse - o no haber llegado a la superficie - y ser transformada por el calor y la presión, dando lugar a rocas metamórficas.

Rocas sedimentarias

Imagen 10 Cap IILas rocas sedimentarias están compuestas por materiales transformados, formadas por la acumulación y consolidación de materia mineral pulverizada, depositada por la erosión.

Las rocas sedimentarias se clasifican según su origen:

Las rocas detríticas, o fragmentarias, se componen de partículas minerales producidas por la desintegración mecánica de otras rocas y transportadas, sin deterioro químico, gracias al agua. Son acarreadas hasta masas mayores de agua, donde se depositan en capas. Ejemplos: lutitas y arenisca.

Las rocas sedimentarias químicas se forman por sedimentación química de materiales que han estado en disolución durante su fase de transporte. En estos procesos de sedimentación también puede influir la actividad de organismos vivos, en cuyo caso se puede hablar de origen bioquímico u orgánico. Ejemplos: yeso, anhidrita y calizas.

Rocas metamórficas

Imagen 11 Cap IILas rocas metamórficas son aquellas cuya composición y textura originales han sido alteradas por calor y presión. A este proceso se le llama metamorfosis de la roca. Los ambientes con calor y presión suficientes para causar metamorfismo se encuentran frecuentemente donde las placas tectónicas de la Tierra se están uniendo. Allí, las placas que chocan entre sí, trituran las rocas y son calentadas a grandes profundidades por el magma.

Las rocas pueden ser alteradas en pequeñas áreas de metamorfismo por contacto, o en grandes áreas por el metamorfismo regional.

El metamorfismo de contacto se produce cuando un magma intuye una roca más fría. En la roca madre o de caja (la más fría) se forma una zona de alteración llamada aureola de contacto. La aureola puede estar dividida en varias zonas metamórficas, ya que cerca del intrusivo se formaran minerales de altas temperaturas como el granate mientras que más lejos se formaran minerales de bajo grado como la clorita.

El metamorfismo regional ocurre cuando grandes regiones de la corteza son comprimidos y se deforman. Cuando los ríos acumulan sedimentos sobre las rocas en cuencas sedimentarias por cientos de millones de años, la presión sobre esas rocas va aumentando y la cuenca se hunde lentamente. Con el tiempo la temperatura y presión en las capas inferiores más antiguas aumentara hasta que comience el metamorfismo.

Otra forma de metamorfismo regional ocurre cuando las placas tectónicas convergen. Una placa se sumerge bajo la otra hacia el manto. En estas zonas de subducción se produce magma que asciende por la corteza, provocando metamorfismo en grandes regiones de la corteza continental cercana a las zonas de subducción.

Compartir esta página

Repost 0
Published by

Presentación

  • : INEB ADVISERS AND MINING CONSULTANTS
  • INEB ADVISERS AND MINING CONSULTANTS
  • : Creado para entregar información a los alumnos de los diferentes cursos. Toda la información puede utilizarse en forma libre mencionando la fuente
  • Contacto

Materias